150 research outputs found

    Advancing Medical Imaging with Language Models: A Journey from N-grams to ChatGPT

    Full text link
    In this paper, we aimed to provide a review and tutorial for researchers in the field of medical imaging using language models to improve their tasks at hand. We began by providing an overview of the history and concepts of language models, with a special focus on large language models. We then reviewed the current literature on how language models are being used to improve medical imaging, emphasizing different applications such as image captioning, report generation, report classification, finding extraction, visual question answering, interpretable diagnosis, and more for various modalities and organs. The ChatGPT was specially highlighted for researchers to explore more potential applications. We covered the potential benefits of accurate and efficient language models for medical imaging analysis, including improving clinical workflow efficiency, reducing diagnostic errors, and assisting healthcare professionals in providing timely and accurate diagnoses. Overall, our goal was to bridge the gap between language models and medical imaging and inspire new ideas and innovations in this exciting area of research. We hope that this review paper will serve as a useful resource for researchers in this field and encourage further exploration of the possibilities of language models in medical imaging

    Multiuser Resource Allocation for Semantic-Relay-Aided Text Transmissions

    Full text link
    Semantic communication (SemCom) is an emerging technology that extracts useful meaning from data and sends only relevant semantic information. Thus, it has the great potential to improve the spectrum efficiency of conventional wireless systems with bit transmissions, especially in low signal-to-noise ratio (SNR) and small bandwidth regions. However, the existing works have mostly overlooked the constraints of mobile devices, which may not have sufficient capabilities to implement resource-demanding semantic encoder/decoder based on deep learning. To address this issue, we propose in this paper a new semantic relay (SemRelay), which is equipped with a semantic receiver to assist multiuser text transmissions. Specifically, the SemRelay decodes semantic information from a base station and forwards it to the users using conventional bit transmission, hence effectively improving text transmission efficiency. To study the multiuser resource allocation, we formulate an optimization problem to maximize the multiuser weighted sum-rate by jointly designing the SemRelay transmit power allocation and system bandwidth allocation. Although this problem is non-convex and hence challenging to solve, we propose an efficient algorithm to obtain its high-quality suboptimal solution by using the block coordinate descent method. Last, numerical results show the effectiveness of the proposed algorithm as well as superior performance of the proposed SemRelay over the conventional decode-and-forward (DF) relay, especially in small bandwidth region.Comment: 6 pages, 3 figures, accepted for IEEE Global Communication Conference (GLOBECOM) 2023 Workshop on Semantic Communication for 6

    Pixel-wise Graph Attention Networks for Person Re-identification

    Full text link
    Graph convolutional networks (GCN) is widely used to handle irregular data since it updates node features by using the structure information of graph. With the help of iterated GCN, high-order information can be obtained to further enhance the representation of nodes. However, how to apply GCN to structured data (such as pictures) has not been deeply studied. In this paper, we explore the application of graph attention networks (GAT) in image feature extraction. First of all, we propose a novel graph generation algorithm to convert images into graphs through matrix transformation. It is one magnitude faster than the algorithm based on K Nearest Neighbors (KNN). Then, GAT is used on the generated graph to update the node features. Thus, a more robust representation is obtained. These two steps are combined into a module called pixel-wise graph attention module (PGA). Since the graph obtained by our graph generation algorithm can still be transformed into a picture after processing, PGA can be well combined with CNN. Based on these two modules, we consulted the ResNet and design a pixel-wise graph attention network (PGANet). The PGANet is applied to the task of person re-identification in the datasets Market1501, DukeMTMC-reID and Occluded-DukeMTMC (outperforms state-of-the-art by 0.8\%, 1.1\% and 11\% respectively, in mAP scores). Experiment results show that it achieves the state-of-the-art performance. \href{https://github.com/wenyu1009/PGANet}{The code is available here}
    • …
    corecore